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Assignment 4—solutions

Exercise 1

Show the results stated in Remark 2.1.2 in the lecture notes.

For fixed 0 ≤ s ≤ t < +∞, arbitrary integer n ∈ N⋆, and indices 0 =: s0 < s1 < · · · < sn =: s, the σ-
algebra σ(X0, Xs1 , . . . , Xsn

) coincides obviously with the σ-algebra σ(X0, Xs1 − X0, . . . , Xsn
− Xsn−1), and is

P-independent of Xt − Xs by assumption. The union of all σ-algebrae of this form when n varies over
N⋆ constitutes a collection C of sets which is closed under finite intersection. Now the collection D of
all sets in FX

s which are P-independent of Xt − Xs is a Dynkin system containing C. We conclude by
Dynkin’s π–λ-systems lemma, that FX

s = σ(C) is contained in D, which ends the proof.

Exercise 2

Prove Proposition 2.2.3.

Since all the Brownian motions are considered with respect to their natural filtrations, we can make
implicitly use of Exercise 1 and check the independence property directly on the increments, when
necessary.

(i) The continuity of paths, as well as the P-independence of the increments are immediate. As for the
P-distribution of the increments, it comes directly for the symmetry of Gaussian distributions, meaning
that if X ∼ N (µ, Σ), then AX ∼ N (Aµ, AΣA⊤).

(ii) Similarly, the continuity of paths, as well as the P-independence of the increments, are also immediate.
Furthermore, for any 0 ≤ s ≤ t

Xc
t − Xc

s = c−1/2(
Bct − Bcs

)
∼ N (0, c−1c(t − s) = t − s).

(iii) Again, everything is rather straightforward as any increment of the process (Bt+s − Bt)t≥0 is also an
increment of B. The fact (Bt+s − Bs)t≥0 is P-independent of (Bu)0≤u≤s is also immediate from the fact
that by definition of Brownian motion, for any t ≥ 0, Bt+s − Bs is P-independent of FB

s .

(iv) This is the only non-trivial statement here, and we will use Proposition 2.2.2 in the Lecture Notes
to obtain the result. It is clear that W is a Gaussian process under P (linear combinations of values of
W are immediately linear combinations of values of B), with mean function 0. As for the covariance
function, we have for any (s, t) ∈ (0, +∞)2

KW (s, t) = tsCov
[
B1/t, B1/s

]
= ts

(
t−1 ∧ s−1)

= t ∧ s.

Similarly, if either s or t is equal to 0, since W0 = 0, then KW (s, t) = 0. The only remaining thing to check
is that the paths of W are continuous. This is obvious on (0, +∞), but not so clear at 0. Notice that by
continuity of W on (0, +∞) and of B on [0, +∞)

P
[{

lim
t↓0

Wt = 0
}]

= P

[ ⋂
n∈N⋆

⋃
m∈N⋆

⋂
q∈Q∩(0,1/m]

{
∥Wq∥ ≤ 1

n

}]
= P

[ ⋂
n∈N⋆

⋃
m∈N⋆

⋂
q∈Q∩(0,1/m]

{
∥Bq∥ ≤ 1

n

}]
= 1,

since the processes (Bt)t>0 and (Wt)t>0 are Gaussian processes under P with the same mean and covariance
functions, so that they have the same distribution.

Exercise 3
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Prove Proposition 2.2.4.

Before starting the proof, notice that for any map f : [0, +∞)×R −→ Rd with at most exponential growth
in the space variables, that is to say such that there exists some continuous map C : [0, +∞) −→ (0, +∞)
verifying ∣∣f(t, x)

∣∣ ≤ C(t)eC(t)∥x∥, (t, x) ∈ [0, +∞) × Rd,

the properties of the Gaussian distribution imply that

EP[∣∣f(t, Bt)
∣∣] =

∫
Rd

∣∣f(t, x)
∣∣ϕ0,tId,d(x)dx ≤ C(t)

(2πt)d/2

∫
Rd

eC(t)∥x∥− 1
2t ∥x∥2

dx < +∞.

This implies that all the functionals appearing in the statement are all P-integrable. For further use, we
also recall that if X is, under P, a one-dimensional Gaussian random variable with mean 0 and variance
σ2, then for any integer p

EP[
X2p

]
= σ2p (2p)!

2pp! , EP[
X2p+1]

= 0.

(i) It suffices here to notice that by independence of the increments of B, and the fact that B is F-adapted,
we have for any 0 ≤ s ≤ t

EP[Bt|Fs] = EP[Bt − Bs + Bs|Fs] = EP[Bt − Bs|Fs] + Bs = EP[Bt − Bs] + Bs = Bs.

(ii) We use the same trick as above and make increments of B appear. We have for any 0 ≤ s ≤ t

EP[∥Bt∥2 − dt|Fs] = EP[
∥Bt − Bs∥2∣∣Fs

]
+ 2Bs ·EP[

Bt − Bs|Fs

]
+ ∥Bs∥2 − dt = d(t − s) + 0 + ∥Bs∥2 − dt = ∥Bs∥2 − ds.

(iii) The reasoning is still the same and simply uses the classical formula for the Laplace transform of a
Gaussian vector. We have for any 0 ≤ s ≤ t

EP[
exp

(
λ · Bt − t∥λ∥2/2

))∣∣Fs

]
= eλ·Bs−t∥λ∥2/2EP[

exp
(
λ · (Bt − Bs)

)∣∣Fs

]
= eλ·Bs−t∥λ∥2/2EP[

exp
(
λ · (Bt − Bs)

)]
= exp

(
λ · Bs − t∥λ∥2/2 + (t − s)∥λ∥2/2

)
= exp

(
λ · Bs − s∥λ∥2/2

)
.

(iv) For this last property, the intuition is still the same. We have for any 0 ≤ s ≤ t

EP[
Pn(t, Bt)

∣∣Fs

]
=

⌊n/2⌋∑
k=0

(−1)kn!
2kk!(n − 2k)! t

kEP[
Bn−2k

t

∣∣Fs

]
=

⌊n/2⌋∑
k=0

(−1)kn!
2kk!(n − 2k)! t

k

( n−2k∑
ℓ=0

(
n − 2k

ℓ

)
Bn−2k−ℓ

s EP[
(Bt − Bs)ℓ

∣∣Fs

])

=
⌊n/2⌋∑
k=0

(−1)kn!
2kk!(n − 2k)! t

k

( n−2k∑
ℓ=0

(
n − 2k

ℓ

)
Bn−2k−ℓ

s EP[
(Bt − Bs)ℓ

])

=
⌊n/2⌋∑
k=0

(−1)kn!
2kk!(n − 2k)! t

k

( ⌊n/2⌋−k∑
ℓ=0

(
n − 2k

2ℓ

)
Bn−2k−2ℓ

s

(t − s)ℓ(2ℓ)!
2ℓℓ!

)

=
⌊n/2⌋∑
k=0

⌊n/2⌋∑
ℓ=k

(
ℓ

k

)
n!(−t)k(t − s)ℓ−k

2ℓℓ!(n − 2ℓ)! Bn−2ℓ
s

=
⌊n/2⌋∑
ℓ=0

n!
2ℓℓ!(n − 2ℓ)!B

n−2ℓ
s

( ℓ∑
k=0

(
ℓ

k

)
(−t)k(t − s)ℓ−k

)

=
⌊n/2⌋∑
ℓ=0

n!(−s)ℓ

2ℓℓ!(n − 2ℓ)!B
n−2ℓ
s = Pn(s, Bs).
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Exercise 4

A continuous time stochastic process is called a Brownian Bridge if it is a Gaussian process with mean 0 and covariance
function s(1−t), s < t. Let W be a Brownian motion and consider the process X = (Xt)0≤t≤1 defined by Xt =: Wt−tW1.

1) Show that X is a Brownian Bridge, and that X does not have independent increments.

2) Show that if (Xn)n∈N is a Gaussian process indexed by N and converges in probability to a random variable X as n
goes to infinity, then it converges also in L2(R, F ,P) to X.

1) We need to show that for any n ∈ N⋆ and any 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ 1, the random vector
(Xt1 , . . . , Xtn

) is a Gaussian vector. It thus actually suffices to show that (Xt1 , . . . , Xtn
) is the image of a

linear transformation of another Gaussian vector. From the lecture notes, we know that the Brownian
motion W is a Gaussian process. We distinguish between two cases

case 1: tn < 1

In this case, the vector (Xt1 , . . . , Xtn
) is the image of the Gaussian vector (Wt1 , . . . , Wtn

, W1) under the
linear map A : Rn+1 −→ Rn defined by

Aij :=


1, i = j ∈ {1, . . . , n},

−ti, j = n + 1, i ∈ {1, . . . , n}
0, else.

case 2: tn = 1

In that case, the vector (Xt1 , . . . , Xtn
) is the image of the Gaussian vector (Wt1 , . . . , Wtn−1 , W1) under the

linear map B : Rn −→ Rn defined by

Bij =


1, i = j ∈ {1, . . . , n − 1},

−ti, j = n, i ∈ {1, . . . , n − 1}
0, else.

In both cases, (Xt1 , . . . , Xtn
) is the image of a linear transformation of a Gaussian vector, hence we are

done.

For any t ∈ [0, 1] we have
EP[Xt] = EP[Wt − tW1] = 0.

For any 0 ≤ s, t ≤ 1, using that Cov(Wt, Ws) = t ∧ s, we have

Cov(Xt, Xs) = Cov(Wt, Ws) − sCov(Wt, W1) − tCov(W1, Ws) + tsCov(W1, W1) = t ∧ s − ts.

Take any t ∈ (0, 1). We show that the increments X1 − Xt, Xt − X0 are correlated. In the same way as
above we obtain that

Cov(X1 − Xt, Xt − X0) = Cov(−Wt + tW1, Wt − tW1) = t(t − 1) ̸= 0.

2) It is known from Probability theory course that convergence in probability implies convergence in
distribution. Hence,

φn(t) := EeitXn −→ φ(t) := EeitX , t ∈ R. (0.1)

Since Xn are Gaussian, we have

φn(t) = exp
(

itµn − 1
2 t2σ2

n

)
, t ∈ R,
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where µn = EXn and σn = var(Xn). It is also clear from (0.1) that, necessarily,

|φn(t)| −→ |φ(t)|, t ∈ R.

Because |φn(t)| = exp(− 1
2 t2σ2

n), this is possible only if the sequence (σ2
n)∞

n=1 admits a limit, which we denote
by σ2. Plugging this into (0.1) yields that the sequence (µn)∞

n=1 also necessarily admits a limit, which we
denote by µ. Hence,

φ(t) = exp
(

itµ − 1
2 t2σ2

)
, t ∈ R.

That is to say, X ∼ N (µ, σ2).

It is also clear that
sup
n∈N

E(Xn)4 = sup
n∈N

(
µ4

n + 6µ2
nσ2

n + 3σ4
n

)
< ∞.

This yields that the sequence (X2
n) is uniformly integrable, which together with convergence in probability

gives
Xn −→ X in L2(R, F ,P).
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