Brownian motion and Stochastic Calculus
Dylan Possamai

Assignment 4—solutions

Exercise 1
Show the results stated in Remark 2.1.2 in the lecture notes.

For fixed 0 < s < t < +o00, arbitrary integer n € N*, and indices 0 =: s < §1 < -+ < s, =: s, the o-
algebra o(Xy, X,,,...,Xs,) coincides obviously with the o-algebra o(Xy, Xs, — Xo,..., X5, — Xs,_,), and is
P-independent of X; — X, by assumption. The union of all s-algebrae of this form when n varies over
N* constitutes a collection C of sets which is closed under finite intersection. Now the collection D of
all sets in FX which are P-independent of X; — X, is a Dynkin system containing C. We conclude by
Dynkin’s 7—)\-systems lemma, that FX = ¢(C) is contained in D, which ends the proof.

Exercise 2
Prove Proposition 2.2.3.

Since all the Brownian motions are considered with respect to their natural filtrations, we can make
implicitly use of Exercise 1 and check the independence property directly on the increments, when
necessary.

(i) The continuity of paths, as well as the P-independence of the increments are immediate. As for the
P-distribution of the increments, it comes directly for the symmetry of Gaussian distributions, meaning
that if X ~ AN (y,Y), then AX ~ N (Au, ALAT).

(#4) Similarly, the continuity of paths, as well as the P-independence of the increments, are also immediate.
Furthermore, for any 0 < s <t

X;—-XS= 12 (Bct - BCS) ~N(0,cte(t —s) =t —s).

(#4) Again, everything is rather straightforward as any increment of the process (B;y+s — B;);>0 is also an
increment of B. The fact (B;ys; — Bs)i>0 is P-independent of (B,)o<u<s is also immediate from the fact
that by definition of Brownian motion, for any t > 0, B;,, — B, is P-independent of F7Z.

(tv) This is the only non-trivial statement here, and we will use Proposition 2.2.2 in the Lecture Notes
to obtain the result. It is clear that W is a Gaussian process under P (linear combinations of values of
W are immediately linear combinations of values of B), with mean function 0. As for the covariance
function, we have for any (s,t) € (0, +00)?

Kw(s,t) = tsCov [Bl/t, Bl/s] = ts(til A 571) =tAs.

Similarly, if either s or t is equal to 0, since Wy = 0, then Ky (s,t) = 0. The only remaining thing to check
is that the paths of W are continuous. This is obvious on (0, 4+00), but not so clear at 0. Notice that by
continuity of W on (0,+00) and of B on [0, +00)
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since the processes (B;);>o and (W;);so are Gaussian processes under P with the same mean and covariance
functions, so that they have the same distribution.

Exercise 3



Prove Proposition 2.2.4.

Before starting the proof, notice that for any map f : [0, +00) x R — R? with at most exponential growth
in the space variables, that is to say such that there exists some continuous map C' : [0, +00) — (0, 400)
verifying

|f(t,2)| < C)eCDl=l (¢ 2) € [0, +00) x RY,

the properties of the Gaussian distribution imply that

C L2
EF[|f(t,By)|] = /Rd | f(t,2)|do,i1y,q(x)d < (m()t?m /Rd COlel=F 12 g « 1o,

This implies that all the functionals appearing in the statement are all P-integrable. For further use, we
also recall that if X is, under P, a one-dimensional Gaussian random variable with mean 0 and variance
o2, then for any integer p

|
]EIP’ [XZP] _ 0‘2p (;ppp)' , E]p [X2p+1] =0.

() It suffices here to notice that by independence of the increments of B, and the fact that B is F-adapted,
we have for any 0 < s <t

EF[B,|F;s] = E¥[B, — By + Bs|Fs| = E¥[B, — B;|Fs] + Bs = E¥[B, — B,] + B, = B,.
(ii) We use the same trick as above and make increments of B appear. We have for any 0 < s <t
E¥[|| B¢||? — dt|Fs] = E¥[|| By — Bs||?|Fs] + 2Bs - EF [ By — By |Fs] + || Bs||* — dt = d(t — s) + 0+ || Bs||> — dt = || B,||* —

(#4i) The reasoning is still the same and simply uses the classical formula for the Laplace transform of a
Gaussian vector. We have for any 0 < s <t

EF [exp (A~ By — t|A2/2))|Fs] = X BN 2EF [exp (- (B, — By))|Fs] = M Be=UNP2EF [exp (A - (B, — By))]
=exp (A- Bo — tAI*/2+ (t — )| A]*/2)
=exp (A B, — s|[A?/2).

(iv) For this last property, the intuition is still the same. We have for any 0 < s <t
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Exercise 4

A continuous time stochastic process is called a Brownian Bridge if it is a Gaussian process with mean 0 and covariance
function s(1—t), s < t. Let W be a Brownian motion and consider the process X = (X;)o<t<1 defined by X, =: W, —tW;.

1) Show that X is a Brownian Bridge, and that X does not have independent increments.

2) Show that if (X, )nen is a Gaussian process indexed by N and converges in probability to a random variable X as n
goes to infinity, then it converges also in L2(R, F,P) to X.

1) We need to show that for any n € N* and any 0 < t; < t, < -+ < ¢, < 1, the random vector
(Xty,--.,Xt,) is a Gaussian vector. It thus actually suffices to show that (X ,...,X;, ) is the image of a
linear transformation of another Gaussian vector. From the lecture notes, we know that the Brownian
motion W is a Gaussian process. We distinguish between two cases

case 1: t, <1

In this case, the vector (X,,,...,X,,) is the image of the Gaussian vector (W, ,...,W, ,W;) under the
linear map A : R*"*! — R” defined by

1,i=j5¢€{l,...,n},
AijZ: —ti7j:n+1,i€{1,...,n}
0, else.

case 2: t, =1

In that case, the vector (X;,,...,X;,) is the image of the Gaussian vector (W;,,..., W, ,,W;) under the
linear map B : R — R"™ defined by

Li=je{l,....n—1},

Bij =4 —t;, j=n, i€{l,...,n—1}
0, else.
In both cases, (X;,,...,X:,) is the image of a linear transformation of a Gaussian vector, hence we are

done.

For any t € [0,1] we have
EF[X;] = EF[W; — tW;] = 0.

For any 0 < s,t <1, using that Cov(W;,W,) =t A s, we have

Cov(Xy, Xs) = Cov(Wy, W) — sCov(Wy, Wy) — tCov(Wr, Wy) + tsCov(Wyp, W1) =t A s — ts.

Take any ¢ € (0,1). We show that the increments X; — X;, X; — X, are correlated. In the same way as
above we obtain that

(COV(Xl - X3, Xy — Xo) = (COV(—Wt + tWy, Wy — th) = t(t — 1) #0.

2) It is known from Probability theory course that convergence in probability implies convergence in
distribution. Hence,

On(t) := Be™n — o(t) := Ee™™, teR. (0.1)

Since X, are (Gaussian, we have



where p, = EX,, and o, = var(X,,). It is also clear from (0.1) that, necessarily,

lon(t)] — |@(t)], teER.

Because |¢,(t)| = exp(—1t?02), this is possible only if the sequence (02)32, admits a limit, which we denote

by o2. Plugging this into (0.1) yields that the sequence (y,,)3; also necessarily admits a limit, which we
denote by u. Hence,

1
o(t) = exp (itu — 2t202) , teR
That is to say, X ~ N (u,0?).

It is also clear that
sup E(X,)* = sup (up + 6p202 + 307t) < oo.
neN neN
This yields that the sequence (X?) is uniformly integrable, which together with convergence in probability
gives
X, — X in L*(R,F,P).



