Assignment 4-solutions

Exercise 1

Show the results stated in Remark 2.1.2 in the lecture notes.
For fixed $0 \leq s \leq t<+\infty$, arbitrary integer $n \in \mathbb{N}^{\star}$, and indices $0=: s_{0}<s_{1}<\cdots<s_{n}=$: s, the σ algebra $\sigma\left(X_{0}, X_{s_{1}}, \ldots, X_{s_{n}}\right)$ coincides obviously with the σ-algebra $\sigma\left(X_{0}, X_{s_{1}}-X_{0}, \ldots, X_{s_{n}}-X_{s_{n-1}}\right)$, and is \mathbb{P}-independent of $X_{t}-X_{s}$ by assumption. The union of all σ-algebrae of this form when n varies over \mathbb{N}^{\star} constitutes a collection \mathcal{C} of sets which is closed under finite intersection. Now the collection \mathcal{D} of all sets in \mathcal{F}_{s}^{X} which are \mathbb{P}-independent of $X_{t}-X_{s}$ is a Dynkin system containing \mathcal{C}. We conclude by Dynkin's π - λ-systems lemma, that $\mathcal{F}_{s}^{X}=\sigma(\mathcal{C})$ is contained in \mathcal{D}, which ends the proof.

Exercise 2

Prove Proposition 2.2.3.
Since all the Brownian motions are considered with respect to their natural filtrations, we can make implicitly use of Exercise 1 and check the independence property directly on the increments, when necessary.
(i) The continuity of paths, as well as the \mathbb{P}-independence of the increments are immediate. As for the \mathbb{P}-distribution of the increments, it comes directly for the symmetry of Gaussian distributions, meaning that if $X \sim \mathcal{N}(\mu, \Sigma)$, then $A X \sim \mathcal{N}\left(A \mu, A \Sigma A^{\top}\right)$.
(ii) Similarly, the continuity of paths, as well as the \mathbb{P}-independence of the increments, are also immediate. Furthermore, for any $0 \leq s \leq t$

$$
X_{t}^{c}-X_{s}^{c}=c^{-1 / 2}\left(B_{c t}-B_{c s}\right) \sim \mathcal{N}\left(0, c^{-1} c(t-s)=t-s\right)
$$

(iii) Again, everything is rather straightforward as any increment of the process $\left(B_{t+s}-B_{t}\right)_{t \geq 0}$ is also an increment of B. The fact $\left(B_{t+s}-B_{s}\right)_{t \geq 0}$ is \mathbb{P}-independent of $\left(B_{u}\right)_{0 \leq u \leq s}$ is also immediate from the fact that by definition of Brownian motion, for any $t \geq 0, B_{t+s}-B_{s}$ is \mathbb{P}-independent of \mathcal{F}_{s}^{B}.
(iv) This is the only non-trivial statement here, and we will use Proposition 2.2.2 in the Lecture Notes to obtain the result. It is clear that W is a Gaussian process under \mathbb{P} (linear combinations of values of W are immediately linear combinations of values of B), with mean function 0 . As for the covariance function, we have for any $(s, t) \in(0,+\infty)^{2}$

$$
K_{W}(s, t)=t s \operatorname{Cov}\left[B_{1 / t}, B_{1 / s}\right]=t s\left(t^{-1} \wedge s^{-1}\right)=t \wedge s
$$

Similarly, if either s or t is equal to 0 , since $W_{0}=0$, then $K_{W}(s, t)=0$. The only remaining thing to check is that the paths of W are continuous. This is obvious on $(0,+\infty)$, but not so clear at 0 . Notice that by continuity of W on $(0,+\infty)$ and of B on $[0,+\infty)$

$$
\mathbb{P}\left[\left\{\lim _{t \downarrow 0} W_{t}=0\right\}\right]=\mathbb{P}\left[\bigcap_{n \in \mathbb{N}^{\star}} \bigcup_{m \in \mathbb{N}^{\star}} \bigcap_{q \in \mathbb{Q} \cap(0,1 / m]}\left\{\left\|W_{q}\right\| \leq \frac{1}{n}\right\}\right]=\mathbb{P}\left[\bigcap_{n \in \mathbb{N}^{\star}} \bigcup_{m \in \mathbb{N}^{\star}} \bigcap_{q \in \mathbb{Q} \cap(0,1 / m]}\left\{\left\|B_{q}\right\| \leq \frac{1}{n}\right\}\right]=1
$$

since the processes $\left(B_{t}\right)_{t>0}$ and $\left(W_{t}\right)_{t>0}$ are Gaussian processes under \mathbb{P} with the same mean and covariance functions, so that they have the same distribution.

Exercise 3

Prove Proposition 2.2.4.
Before starting the proof, notice that for any map $f:[0,+\infty) \times \mathbb{R} \longrightarrow \mathbb{R}^{d}$ with at most exponential growth in the space variables, that is to say such that there exists some continuous map $C:[0,+\infty) \longrightarrow(0,+\infty)$ verifying

$$
|f(t, x)| \leq C(t) \mathrm{e}^{C(t)\|x\|},(t, x) \in[0,+\infty) \times \mathbb{R}^{d}
$$

the properties of the Gaussian distribution imply that

$$
\mathbb{E}^{\mathbb{P}}\left[\left|f\left(t, B_{t}\right)\right|\right]=\int_{\mathbb{R}^{d}}|f(t, x)| \phi_{0, t \mathrm{I}_{d}, d}(x) \mathrm{d} x \leq \frac{C(t)}{(2 \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} \mathrm{e}^{C(t)\|x\|-\frac{1}{2 t}\|x\|^{2}} \mathrm{~d} x<+\infty
$$

This implies that all the functionals appearing in the statement are all \mathbb{P}-integrable. For further use, we also recall that if X is, under \mathbb{P}, a one-dimensional Gaussian random variable with mean 0 and variance σ^{2}, then for any integer p

$$
\mathbb{E}^{\mathbb{P}}\left[X^{2 p}\right]=\sigma^{2 p} \frac{(2 p)!}{2^{p} p!}, \mathbb{E}^{\mathbb{P}}\left[X^{2 p+1}\right]=0
$$

(i) It suffices here to notice that by independence of the increments of B, and the fact that B is \mathbb{F}-adapted, we have for any $0 \leq s \leq t$

$$
\mathbb{E}^{\mathbb{P}}\left[B_{t} \mid \mathcal{F}_{s}\right]=\mathbb{E}^{\mathbb{P}}\left[B_{t}-B_{s}+B_{s} \mid \mathcal{F}_{s}\right]=\mathbb{E}^{\mathbb{P}}\left[B_{t}-B_{s} \mid \mathcal{F}_{s}\right]+B_{s}=\mathbb{E}^{\mathbb{P}}\left[B_{t}-B_{s}\right]+B_{s}=B_{s}
$$

(ii) We use the same trick as above and make increments of B appear. We have for any $0 \leq s \leq t$ $\mathbb{E}^{\mathbb{P}}\left[\left\|B_{t}\right\|^{2}-d t \mid \mathcal{F}_{s}\right]=\mathbb{E}^{\mathbb{P}}\left[\left\|B_{t}-B_{s}\right\|^{2} \mid \mathcal{F}_{s}\right]+2 B_{s} \cdot \mathbb{E}^{\mathbb{P}}\left[B_{t}-B_{s} \mid \mathcal{F}_{s}\right]+\left\|B_{s}\right\|^{2}-d t=d(t-s)+0+\left\|B_{s}\right\|^{2}-d t=\left\|B_{s}\right\|^{2}-d s$.
(iii) The reasoning is still the same and simply uses the classical formula for the Laplace transform of a Gaussian vector. We have for any $0 \leq s \leq t$

$$
\begin{aligned}
\left.\mathbb{E}^{\mathbb{P}}\left[\exp \left(\lambda \cdot B_{t}-t\|\lambda\|^{2} / 2\right)\right) \mid \mathcal{F}_{s}\right]=\mathrm{e}^{\lambda \cdot B_{s}-t\|\lambda\|^{2} / 2} \mathbb{E}^{\mathbb{P}}\left[\exp \left(\lambda \cdot\left(B_{t}-B_{s}\right)\right) \mid \mathcal{F}_{s}\right] & =\mathrm{e}^{\lambda \cdot B_{s}-t\|\lambda\|^{2} / 2} \mathbb{E}^{\mathbb{P}}\left[\exp \left(\lambda \cdot\left(B_{t}-B_{s}\right)\right)\right] \\
& =\exp \left(\lambda \cdot B_{s}-t\|\lambda\|^{2} / 2+(t-s)\|\lambda\|^{2} / 2\right) \\
& =\exp \left(\lambda \cdot B_{s}-s\|\lambda\|^{2} / 2\right)
\end{aligned}
$$

(iv) For this last property, the intuition is still the same. We have for any $0 \leq s \leq t$

$$
\begin{aligned}
\mathbb{E}^{\mathbb{P}}\left[P_{n}\left(t, B_{t}\right) \mid \mathcal{F}_{s}\right] & =\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{(-1)^{k} n!}{2^{k} k!(n-2 k)!} t^{k} \mathbb{E}^{\mathbb{P}}\left[B_{t}^{n-2 k} \mid \mathcal{F}_{s}\right] \\
& =\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{(-1)^{k} n!}{2^{k} k!(n-2 k)!} t^{k}\left(\sum_{\ell=0}^{n-2 k}\binom{n-2 k}{\ell} B_{s}^{n-2 k-\ell} \mathbb{E}^{\mathbb{P}}\left[\left(B_{t}-B_{s}\right)^{\ell} \mid \mathcal{F}_{s}\right]\right) \\
& =\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{(-1)^{k} n!}{2^{k} k!(n-2 k)!} t^{k}\left(\sum_{\ell=0}^{n-2 k}\binom{n-2 k}{\ell} B_{s}^{n-2 k-\ell} \mathbb{E}^{\mathbb{P}}\left[\left(B_{t}-B_{s}\right)^{\ell}\right]\right) \\
& =\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{(-1)^{k} n!}{2^{k} k!(n-2 k)!} t^{k}\left(\sum_{\ell=0}^{\lfloor n / 2\rfloor-k}\binom{n-2 k}{2 \ell} B_{s}^{n-2 k-2 \ell} \frac{(t-s)^{\ell}(2 \ell)!}{2^{\ell} \ell!}\right) \\
& =\sum_{k=0}^{\lfloor n / 2\rfloor} \sum_{\ell=k}^{\lfloor n / 2\rfloor}\binom{\ell}{k} \frac{n!(-t)^{k}(t-s)^{\ell-k}}{2^{\ell} \ell!(n-2 \ell)!} B_{s}^{n-2 \ell} \\
& =\sum_{\ell=0}^{\lfloor n / 2\rfloor} \frac{n!}{2^{\ell} \ell!(n-2 \ell)!} B_{s}^{n-2 \ell}\left(\sum_{k=0}^{\ell}\binom{\ell}{k}(-t)^{k}(t-s)^{\ell-k}\right) \\
& =\sum_{\ell=0}^{\lfloor n / 2\rfloor} \frac{n!(-s)^{\ell}}{2^{\ell} \ell!(n-2 \ell)!} B_{s}^{n-2 \ell}=P_{n}\left(s, B_{s}\right) .
\end{aligned}
$$

Exercise 4

A continuous time stochastic process is called a Brownian Bridge if it is a Gaussian process with mean 0 and covariance function $s(1-t), s<t$. Let W be a Brownian motion and consider the process $X=\left(X_{t}\right)_{0 \leq t \leq 1}$ defined by $X_{t}=: W_{t}-t W_{1}$.

1) Show that X is a Brownian Bridge, and that X does not have independent increments.
2) Show that if $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a Gaussian process indexed by \mathbb{N} and converges in probability to a random variable X as n goes to infinity, then it converges also in $\mathbb{L}^{2}(\mathbb{R}, \mathcal{F}, \mathbb{P})$ to X.
3) We need to show that for any $n \in \mathbb{N}^{\star}$ and any $0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{n} \leq 1$, the random vector $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ is a Gaussian vector. It thus actually suffices to show that $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ is the image of a linear transformation of another Gaussian vector. From the lecture notes, we know that the Brownian motion W is a Gaussian process. We distinguish between two cases
case 1: $t_{n}<1$
In this case, the vector $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ is the image of the Gaussian vector ($W_{t_{1}}, \ldots, W_{t_{n}}, W_{1}$) under the linear map $A: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}^{n}$ defined by

$$
A_{i j}:=\left\{\begin{array}{l}
1, i=j \in\{1, \ldots, n\} \\
-t_{i}, j=n+1, i \in\{1, \ldots, n\} \\
0, \text { else } .
\end{array}\right.
$$

case 2: $t_{n}=1$
In that case, the vector $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ is the image of the Gaussian vector $\left(W_{t_{1}}, \ldots, W_{t_{n-1}}, W_{1}\right)$ under the linear map $B: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ defined by

$$
B_{i j}=\left\{\begin{array}{l}
1, i=j \in\{1, \ldots, n-1\} \\
-t_{i}, j=n, i \in\{1, \ldots, n-1\} \\
0, \text { else. }
\end{array}\right.
$$

In both cases, $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ is the image of a linear transformation of a Gaussian vector, hence we are done.

For any $t \in[0,1]$ we have

$$
\mathbb{E}^{\mathbb{P}}\left[X_{t}\right]=\mathbb{E}^{\mathbb{P}}\left[W_{t}-t W_{1}\right]=0 .
$$

For any $0 \leq s, t \leq 1$, using that $\operatorname{Cov}\left(W_{t}, W_{s}\right)=t \wedge s$, we have

$$
\operatorname{Cov}\left(X_{t}, X_{s}\right)=\operatorname{Cov}\left(W_{t}, W_{s}\right)-s \operatorname{Cov}\left(W_{t}, W_{1}\right)-t \operatorname{Cov}\left(W_{1}, W_{s}\right)+t s \operatorname{Cov}\left(W_{1}, W_{1}\right)=t \wedge s-t s
$$

Take any $t \in(0,1)$. We show that the increments $X_{1}-X_{t}, X_{t}-X_{0}$ are correlated. In the same way as above we obtain that

$$
\operatorname{Cov}\left(X_{1}-X_{t}, X_{t}-X_{0}\right)=\operatorname{Cov}\left(-W_{t}+t W_{1}, W_{t}-t W_{1}\right)=t(t-1) \neq 0 .
$$

2) It is known from Probability theory course that convergence in probability implies convergence in distribution. Hence,

$$
\begin{equation*}
\varphi_{n}(t):=\mathbb{E} e^{i t X_{n}} \longrightarrow \varphi(t):=\mathbb{E} e^{i t X}, \quad t \in \mathbb{R} . \tag{0.1}
\end{equation*}
$$

Since X_{n} are Gaussian, we have

$$
\varphi_{n}(t)=\exp \left(i t \mu_{n}-\frac{1}{2} t^{2} \sigma_{n}^{2}\right), \quad t \in \mathbb{R}
$$

where $\mu_{n}=\mathbb{E} X_{n}$ and $\sigma_{n}=\operatorname{var}\left(X_{n}\right)$. It is also clear from (0.1) that, necessarily,

$$
\left|\varphi_{n}(t)\right| \longrightarrow|\varphi(t)|, \quad t \in \mathbb{R}
$$

Because $\left|\varphi_{n}(t)\right|=\exp \left(-\frac{1}{2} t^{2} \sigma_{n}^{2}\right)$, this is possible only if the sequence $\left(\sigma_{n}^{2}\right)_{n=1}^{\infty}$ admits a limit, which we denote by σ^{2}. Plugging this into (0.1) yields that the sequence $\left(\mu_{n}\right)_{n=1}^{\infty}$ also necessarily admits a limit, which we denote by μ. Hence,

$$
\varphi(t)=\exp \left(i t \mu-\frac{1}{2} t^{2} \sigma^{2}\right), \quad t \in \mathbb{R}
$$

That is to say, $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
It is also clear that

$$
\sup _{n \in \mathbb{N}} \mathbb{E}\left(X_{n}\right)^{4}=\sup _{n \in \mathbb{N}}\left(\mu_{n}^{4}+6 \mu_{n}^{2} \sigma_{n}^{2}+3 \sigma_{n}^{4}\right)<\infty
$$

This yields that the sequence $\left(X_{n}^{2}\right)$ is uniformly integrable, which together with convergence in probability gives

$$
X_{n} \longrightarrow X \quad \text { in } L^{2}(\mathbb{R}, \mathcal{F}, \mathbb{P})
$$

